// rf22_mesh_client.pde // -*- mode: C++ -*- // Example sketch showing how to create a simple addressed, routed reliable messaging client // with the RHMesh class. // It is designed to work with the other examples rf22_mesh_server* // Hint: you can simulate other network topologies by setting the // RH_TEST_NETWORK define in RHRouter.h // Mesh has much greater memory requirements, and you may need to limit the // max message length to prevent wierd crashes #define RH_MESH_MAX_MESSAGE_LEN 50 #include #include #include // In this small artifical network of 4 nodes, #define CLIENT_ADDRESS 1 #define SERVER1_ADDRESS 2 #define SERVER2_ADDRESS 3 #define SERVER3_ADDRESS 4 // Singleton instance of the radio driver RH_RF22 driver; // Class to manage message delivery and receipt, using the driver declared above RHMesh manager(driver, CLIENT_ADDRESS); void setup() { Serial.begin(9600); if (!manager.init()) Serial.println("init failed"); // Defaults after init are 434.0MHz, 0.05MHz AFC pull-in, modulation FSK_Rb2_4Fd36 } uint8_t data[] = "Hello World!"; // Dont put this on the stack: uint8_t buf[RH_MESH_MAX_MESSAGE_LEN]; void loop() { Serial.println("Sending to manager_mesh_server3"); // Send a message to a rf22_mesh_server // A route to the destination will be automatically discovered. if (manager.sendtoWait(data, sizeof(data), SERVER3_ADDRESS) == RH_ROUTER_ERROR_NONE) { // It has been reliably delivered to the next node. // Now wait for a reply from the ultimate server uint8_t len = sizeof(buf); uint8_t from; if (manager.recvfromAckTimeout(buf, &len, 3000, &from)) { Serial.print("got reply from : 0x"); Serial.print(from, HEX); Serial.print(": "); Serial.println((char*)buf); } else { Serial.println("No reply, is rf22_mesh_server1, rf22_mesh_server2 and rf22_mesh_server3 running?"); } } else Serial.println("sendtoWait failed. Are the intermediate mesh servers running?"); }