Files
RadioHead/RH_NRF51.h
Lazarewicz Julien 6c6451c92c first commit
2025-07-22 15:27:00 +02:00

303 lines
13 KiB
C++

// RH_NRF51.h
// Author: Mike McCauley
// Copyright (C) 2015 Mike McCauley
// $Id: RH_NRF51.h,v 1.5 2017/07/25 05:26:50 mikem Exp $
//
#ifndef RH_NRF51_h
#define RH_NRF51_h
#include <RHGenericDriver.h>
// This is the maximum number of bytes that can be carried by the nRF51.
// We use some for headers, keeping fewer for RadioHead messages
#define RH_NRF51_MAX_PAYLOAD_LEN 254
// The length of the headers we add.
// The headers are inside the nRF51 payload
// We add:
// S0 (not used)
// LEN
// S1 (not used)
// to
// from
// id
// flags
#define RH_NRF51_HEADER_LEN 7
// This is the maximum RadioHead user message length that can be supported by this library. Limited by
// the supported message lengths in the nRF51
#define RH_NRF51_MAX_MESSAGE_LEN (RH_NRF51_MAX_PAYLOAD_LEN-RH_NRF51_HEADER_LEN)
// Define to be 1 if you want to support AES CCA encryption using the built-in
// encryption engine.
#define RH_NRF51_HAVE_ENCRYPTION 1
// When encryption is enabled, have a much shorter max message length
#define RH_NRF51_MAX_ENCRYPTED_MESSAGE_LEN (27-4)
// The required length of the AES encryption key
#define RH_NRF51_ENCRYPTION_KEY_LENGTH 16
// This is the size of the CCM data structure for AES encryption
// REVISIT: use a struct?
#define RH_NRF51_AES_CCM_CNF_SIZE 33
/////////////////////////////////////////////////////////////////////
/// \class RH_NRF51 RH_NRF51.h <RH_NRF51.h>
/// \brief Send and receive unaddressed, unreliable datagrams by nRF51 and nRF52 compatible transceivers.
///
/// Supported transceivers include:
/// - Nordic nRF51 based 2.4GHz radio modules, such as nRF51822
/// and other compatible chips, such as used in RedBearLabs devices like:
/// http://store.redbearlab.com/products/redbearlab-nrf51822
/// http://store.redbearlab.com/products/blenano
/// and
/// Sparkfun nRF52832 breakout board, with Arduino 1.6.13 and
/// Sparkfun nRF52 boards manager 0.2.3
///
/// This base class provides basic functions for sending and receiving unaddressed, unreliable datagrams
/// of arbitrary length to 254 octets per packet. Use one of the Manager classes to get addressing and
/// acknowledgement reliability, routing, meshes etc.
///
/// The nRF51822 (https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822)
/// and nRF52832 (https://learn.sparkfun.com/tutorials/nrf52832-breakout-board-hookup-guide)
/// is a complete SoC (system on a chip) with ARM microprocessor and 2.4 GHz radio, which supports a range of channels
/// and transmission bit rates. Chip antenna is on-board.
///
/// This library provides functions for sending and receiving messages of up to 254 octets on any
/// frequency supported by the nRF51822/nRF52832, at a selected data rate.
///
/// The nRF51 transceiver is configured to use Enhanced Shockburst with no acknowledgement and no retransmits.
/// TXADDRESS and RXADDRESSES:RXADDR0 (ie pipe 0) are the logical address used. The on-air network address
/// is set in BASE0 and PREFIX0. SHORTS is used to automatically transition the radio between Ready, Start and Disable.
/// No interrupts are used.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
/// data rate, and with identical network addresses.
///
/// Example programs are included to show the main modes of use.
///
/// \par Packet Format
///
/// All messages sent and received by this class conform to this packet format. It is NOT compatible
/// with the one used by RH_NRF24 and the nRF24L01 product specification, mainly because the nRF24 only supports
/// 6 bits of message length.
///
/// - 1 octets PREAMBLE
/// - 3 to 5 octets NETWORK ADDRESS
/// - 1 octet S0 (not used, required if encryption used)
/// - 8 bits PAYLOAD LENGTH
/// - 1 octet S1 (not used, required if encryption used)
/// - 0 to 251 octets PAYLOAD (possibly encrypted), consisting of:
/// - 1 octet TO header
/// - 1 octet FROM header
/// - 1 octet ID header
/// - 1 octet FLAGS header
/// - 0 to 247 octets of user message
/// - 2 octets CRC (Algorithm x^16+x^12^x^5+1 with initial value 0xFFFF).
///
/// \par Example programs
///
/// Several example programs are provided.
///
/// The sample programs are designed to be built using Arduino 1.6.4 or later using the procedures outlined
/// in http://redbearlab.com/getting-started-nrf51822/
/// or with Sparkfun nRF52832 breakout board, with Arduino 1.6.13 and
/// Sparkfun nRF52 boards manager 0.2.3 using the procedures outlined in
/// https://learn.sparkfun.com/tutorials/nrf52832-breakout-board-hookup-guide
///
/// \par Radio Performance
///
/// At DataRate2Mbps (2Mb/s), payload length vs airtime:
/// 0 bytes takes about 70us, 128 bytes takes 520us, 254 bytes take 1020us.
/// You can extrapolate linearly to slower data rates.
///
/// The RF powers claimed by the chip manufacturer have not been independently verified here.
///
/// \par Memory
///
/// The compiled client and server sketches are about 42k bytes on Arduino.
/// The reliable client and server sketches compile to about 43k bytes on Arduino. Unfortunately the
/// Arduino build environmnet does not drop unused clsses and code, so the resulting programs include
/// all the unused classes ad code. This needs to be revisited.
/// RAM requirements are minimal.
///
class RH_NRF51 : public RHGenericDriver
{
public:
/// \brief Defines convenient values for setting data rates in setRF()
typedef enum
{
DataRate1Mbps = 0, ///< 1 Mbps
DataRate2Mbps, ///< 2 Mbps
DataRate250kbps ///< 250 kbps
} DataRate;
/// \brief Convenient values for setting transmitter power in setRF()
typedef enum
{
// Add 20dBm for nRF24L01p with PA and LNA modules
TransmitPower4dBm = 0, ///< 4 dBm
TransmitPower0dBm, ///< 0 dBm
TransmitPowerm4dBm, ///< -4 dBm
TransmitPowerm8dBm, ///< -8 dBm
TransmitPowerm12dBm, ///< -12 dBm
TransmitPowerm16dBm, ///< -16 dBm
TransmitPowerm20dBm, ///< -20 dBm
TransmitPowerm30dBm, ///< -30 dBm
} TransmitPower;
/// Constructor.
/// After constructing, you must call init() to initialise the interface
/// and the radio module
RH_NRF51();
/// Initialises this instance and the radio module connected to it.
/// The following steps are taken:
/// - Start the processors High Frequency clock DC/DC converter and
/// - Disable and reset the radio
/// - Set the logical channel to 0 for transmit and receive (only pipe 0 is used)
/// - Configure the CRC (2 octets, algorithm x^16+x^12^x^5+1 with initial value 0xffff)
/// - Set the default network address of 0xE7E7E7E7E7
/// - Set channel to 2
/// - Set data rate to DataRate2Mbps
/// - Set TX power to TransmitPower0dBm
/// \return true if everything was successful
bool init();
/// Sets the transmit and receive channel number.
/// The frequency used is (2400 + channel) MHz
/// \return true on success
bool setChannel(uint8_t channel);
/// Sets the Network address.
/// Only nodes with the same network address can communicate with each other. You
/// can set different network addresses in different sets of nodes to isolate them from each other.
/// Internally, this sets the nRF51 BASE0 and PREFIX0 to be the given network address.
/// The first octet of the address is used for PREFIX0 and the rest is used for BASE0. BALEN is
/// set to the approprtae base length.
/// The default network address is 0xE7E7E7E7E7.
/// \param[in] address The new network address. Must match the network address of any receiving node(s).
/// \param[in] len Number of bytes of address to set (3 to 5).
/// \return true on success, false if len is not in the range 3-5 inclusive.
bool setNetworkAddress(uint8_t* address, uint8_t len);
/// Sets the data rate and transmitter power to use.
/// \param [in] data_rate The data rate to use for all packets transmitted and received. One of RH_NRF51::DataRate.
/// \param [in] power Transmitter power. One of RH_NRF51::TransmitPower.
/// \return true on success
bool setRF(DataRate data_rate, TransmitPower power);
/// Sets the radio in power down mode, with the configuration set to the
/// last value from setOpMode().
/// Sets chip enable to LOW.
void setModeIdle();
/// Sets the radio in RX mode.
void setModeRx();
/// Sets the radio in TX mode.
void setModeTx();
/// Sends data to the address set by setTransmitAddress()
/// Sets the radio to TX mode.
/// Caution: when encryption is enabled, the maximum message length is reduced to 23 octets.
/// \param [in] data Data bytes to send.
/// \param [in] len Number of data bytes to send
/// \return true on success (which does not necessarily mean the receiver got the message, only that the message was
/// successfully transmitted). False if the message is too long or was otherwise not transmitted.
bool send(const uint8_t* data, uint8_t len);
/// Blocks until the current message (if any)
/// has been transmitted
/// \return true on success, false if the chip is not in transmit mode or other transmit failure
virtual bool waitPacketSent();
/// Indicates if the chip is in transmit mode and
/// there is a packet currently being transmitted
/// \return true if the chip is in transmit mode and there is a transmission in progress
bool isSending();
/// Prints the value of all NRF_RADIO registers.
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging purposes only.
/// Caution: there are 1024 of them (many reserved and set to 0).
/// \return true on success
bool printRegisters();
/// Checks whether a received message is available.
/// This can be called multiple times in a timeout loop
/// \return true if a complete, valid message has been received and is able to be retrieved by
/// recv()
bool available();
/// Turns the receiver on if it not already on.
/// Once a message with CRC correct is received, the receiver will be returned to Idle mode.
/// If there is a valid message available, copy it to buf and return true
/// else return false.
/// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
/// You should be sure to call this function frequently enough to not miss any messages
/// It is recommended that you call it in your main loop.
/// \param[in] buf Location to copy the received message
/// \param[in,out] len Pointer to the number of octets available in buf. The number be reset to the actual number of octets copied.
/// \return true if a valid message was copied to buf
bool recv(uint8_t* buf, uint8_t* len);
/// Enables AES encryption and sets the AES encryption key, used
/// to encrypt and decrypt all messages using the on-chip AES CCM mode encryption engine.
/// The default is disabled.
/// In the AES configuration, the message counter and IV is always set to 0, which
/// means the same keystream is used for every message with a given key.
/// Caution: when encryption is enabled, the maximum message length is reduced to 23 octets.
/// \param[in] key The key to use. Must be 16 bytes long. The same key must be installed
/// in other instances of RH_RF51, otherwise communications will not work correctly. If key is NULL,
/// encryption is disabled, which is the default.
void setEncryptionKey(uint8_t* key = NULL);
/// The maximum message length supported by this driver
/// \return The maximum message length supported by this driver
uint8_t maxMessageLength();
/// Reeads the current die temperature using the built in TEMP peripheral.
/// Blocks while the temperature is measured, which takes about 30 microseconds.
// \return the current die temperature in degrees C.
float get_temperature();
protected:
/// Examine the receive buffer to determine whether the message is for this node
void validateRxBuf();
/// Clear our local receive buffer
void clearRxBuf();
private:
/// The receiver/transmitter buffer
/// First octet is the payload length, remainder is the payload
uint8_t _buf[RH_NRF51_MAX_PAYLOAD_LEN+1];
/// True when there is a valid message in the buffer
bool _rxBufValid;
#if RH_NRF51_HAVE_ENCRYPTION
/// True if an AES key has been specified and that we are therfore encrypting
/// and decrypting messages on the fly
bool _encrypting;
/// Scratch area for AES encryption
uint8_t _scratch[RH_NRF51_MAX_PAYLOAD_LEN+1+16];
/// Where the AES encryption key and IV are stored
uint8_t _encryption_cnf[RH_NRF51_AES_CCM_CNF_SIZE];
#endif
};
/// @example nrf51_client.ino
/// @example nrf51_server.ino
/// @example nrf51_reliable_datagram_client.ino
/// @example nrf51_reliable_datagram_server.ino
/// @example nrf51_audio_tx.ino
/// @example nrf51_audio_rx.ino
#endif