Files
RadioHead/RHutil_pigpio/RasPi.cpp
Lazarewicz Julien 6c6451c92c first commit
2025-07-22 15:27:00 +02:00

265 lines
6.3 KiB
C++

// RasPi.cpp
//(9/22/2019) Contributed by Brody M. This file is based off RHutil\RasPi.cpp
// but modified for the pigpio library instead of BCM2835. Original
// code maintained where possible. Unused code commented out and
// left in place.
// Routines for implementing RadioHead on Raspberry Pi
// using BCM2835 library for GPIO
//
// Contributed by Mike Poublon and used with permission
#include <RadioHead.h>
#if (RH_PLATFORM == RH_PLATFORM_RASPI)
#include <sys/time.h>
#include <time.h>
#include "RasPi.h"
#include <stdio.h>
int spiHandle;
//Initialize the values for sanity
timeval RHStartTime;
void SPIClass::begin()
{
//Set SPI Defaults
//Retaining BCM2835 macros for compatibility with RadioHead
uint16_t divider = BCM2835_SPI_CLOCK_DIVIDER_256;
uint8_t bitorder = BCM2835_SPI_BIT_ORDER_MSBFIRST;
uint8_t datamode = BCM2835_SPI_MODE0;
begin(divider, bitorder, datamode);
}
//void SPIClass::begin(uint32_t spiChannel, uint32_t spiBaud, uint32_t spiFlags)
void SPIClass::begin(uint16_t divider, uint8_t bitOrder, uint8_t dataMode)
{
//Set CS pins polarity to low
//bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 0);
//pigpio SPI Defailts
//SPI Speed
//BCM2835 divider of 256 is approx 1MHz SCLK, depending on model
//uint32_t spiBaud = 1000000;
//Spi Flag Settings
//21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
//b b b b b b R T n n n n W A u2 u1 u0 p2 p1 p0 m m
//m m bits = mode
//Mode 0 = 0 0
uint32_t spiBaud = convertClockDivider(divider);
//datamode is 0 to 3 on BCM2835
uint32_t spiFlags = 0; //Zero is a good default start.
//on pigpio, the least sig 2 bits set datamode, which will probably be zero.
spiFlags = 0x00000000 | (uint32_t) dataMode;
//According to documentation, bitOrder for SPI MAIN in pigpio is always MSBFIRST. So bitOrder ignored.
printf("\nSPI Settings:\nBaud rate=%d\nFlags=%d\n\n", spiBaud, spiFlags);
spiHandle = spiOpen(0, spiBaud, spiFlags); //spiChannel assumed to be zero.
//Initialize a timestamp for millis calculation
gettimeofday(&RHStartTime, NULL);
}
void SPIClass::end()
{
//End the SPI
//bcm2835_spi_end();
spiClose(spiHandle);
}
uint32_t SPIClass::convertClockDivider(uint16_t rate)
{
//Simple divide default RPi SPI clock by divider amount.
//Nominal clock at 250MHz for Zero.
return 250000000/rate;
}
/*
//Thes functions aren't necessary
void SPIClass::setBitOrder(uint8_t bitOrder)
{
//Set the SPI bit Order
bcm2835_spi_setBitOrder(bitOrder);
}
void SPIClass::setDataMode(uint8_t mode)
{
//Set SPI data mode
bcm2835_spi_setDataMode(mode);
}
void SPIClass::setClockDivider(uint16_t rate)
{
//Set SPI clock divider
bcm2835_spi_setClockDivider(rate);
}
*/
byte SPIClass::transfer(byte _data)
{
char txByte[1] = {(char)_data};
char rxByte[1];
//For RF Compatibility, just transfer 1 byte
spiXfer(spiHandle, txByte, rxByte, 1);
return (byte)rxByte[0];
}
//void pinMode(unsigned char pin, unsigned char mode)
void pinMode(uint8_t pin, WiringPinMode mode)
{
if (mode == OUTPUT)
{
gpioSetMode(pin, PI_OUTPUT);
//bcm2835_gpio_fsel(pin,BCM2835_GPIO_FSEL_OUTP);
}
else if (mode == INPUT)
{
gpioSetMode(pin, PI_INPUT);
//bcm2835_gpio_fsel(pin,BCM2835_GPIO_FSEL_INPT);
}
else if (mode == INPUT_PULLUP)
{
gpioSetMode(pin, PI_INPUT);
gpioSetPullUpDown(pin, PI_PUD_UP);
}
else if (mode == INPUT_PULLDOWN)
{
gpioSetMode(pin, PI_INPUT);
gpioSetPullUpDown(pin, PI_PUD_DOWN);
}
else
{
//For safety
gpioSetMode(pin, PI_INPUT);
}
}
void digitalWrite(unsigned char pin, unsigned char value)
{
//bcm2835_gpio_write(pin,value);
//Could have just written gpioWrite(pin, value)
if(value == HIGH)
{
gpioWrite(pin, PI_ON);
}
else
{
gpioWrite(pin, PI_OFF);
}
}
unsigned long millis()
{
//Declare a variable to store current time
struct timeval RHCurrentTime;
//Get current time
gettimeofday(&RHCurrentTime,NULL);
//Calculate the difference between our start time and the end time
unsigned long difference = ((RHCurrentTime.tv_sec - RHStartTime.tv_sec) * 1000);
difference += ((RHCurrentTime.tv_usec - RHStartTime.tv_usec)/1000);
//Return the calculated value
return difference;
}
void delay (unsigned long ms)
{
//Implement Delay function
struct timespec ts;
ts.tv_sec=0;
ts.tv_nsec=(ms * 1000);
nanosleep(&ts,&ts);
}
long random(long min, long max)
{
long diff = max - min;
long ret = diff * rand() + min;
return ret;
}
//******************************
//* Attach Interupt
//* Emulate Arduino Function
//******************************
void attachInterrupt(unsigned char pin, void (*handler)(void), int mode)
{
switch(mode)
{
case CHANGE:
gpioSetISRFunc(pin, EITHER_EDGE, 0, (void (*)(int,int,unsigned int))handler);
break;
case RISING:
gpioSetISRFunc(pin, RISING_EDGE, 0, (void (*)(int,int,unsigned int))handler);
break;
case FALLING:
gpioSetISRFunc(pin, FALLING_EDGE, 0, (void (*)(int,int,unsigned int))handler);
break;
default:
break;
}
}
void SerialSimulator::begin(int baud)
{
//No implementation neccesary - Serial emulation on Linux = standard console
//
//Initialize a timestamp for millis calculation - we do this here as well in case SPI
//isn't used for some reason
gettimeofday(&RHStartTime, NULL);
}
size_t SerialSimulator::println(const char* s)
{
size_t charsPrinted = 0;
charsPrinted = print(s);
printf("\n");
return charsPrinted + 1;
}
size_t SerialSimulator::print(const char* s)
{
return (size_t)printf(s);
}
size_t SerialSimulator::print(unsigned int n, int base)
{
if (base == DEC)
return (size_t)printf("%d", n);
else if (base == HEX)
return (size_t)printf("%02x", n);
else if (base == OCT)
return (size_t)printf("%o", n);
// TODO: BIN
else
return 0;
}
size_t SerialSimulator::print(char ch)
{
return (size_t)printf("%c", ch);
}
size_t SerialSimulator::println(char ch)
{
return (size_t)printf("%c\n", ch);
}
size_t SerialSimulator::print(unsigned char ch, int base)
{
return print((unsigned int)ch, base);
}
size_t SerialSimulator::println(unsigned char ch, int base)
{
size_t charsPrinted = 0;
charsPrinted = print((unsigned int)ch, base);
printf("\n");
return charsPrinted + 1;
}
#endif